Development of a Software Package
for

Radiosity Computation

by

Wong Kam Wah

A thesis
presented to The University of Hong Kong
in fulfillment of the
thesis requirement for the degree of
Master of Philosophy
in
Computer Science

March 1996

Development of a Software Package
for

Radiosity Computation

by

Wong Kam Wah

A thesis
presented to The University of Hong Kong
in fulfillment of the
thesis requirement for the degree of
Master of Philosophy
n
Computer Science

March 1996

Abstract of thesis entitled

Development of a Software Package
for
Radiosity Computation

Submitted by
Wong Kam Wah
for the degree of Master of Philosophy
at The University of Hong Kong

in March 1996

The radiosity method is a newly developed technique for rendering pictures in computers.
It uses a large number of small patches to represent the surfaces of a scene and accurately
models the interactions of light between the patches according to the laws in physics. The
method requires a lot of computations but generates very realistic images of in-door scene
with soft lighting. The original version of the radiosity method proposed in 1984 was
very slow and required tremendous amount of storage. Since then, many radiosity
algorithms which run faster, require less storage, or produce more accurate images have
been published. During the same period, the graphics machines become more powerful
and cheaper. The objective of this project is to develop a software package on
contemporary graphics machines which provides user friendly graphical interface for
scene description, automatically divides large surfaces into small patches, and performs

radiosity computation.

We investigated in detarl some of the relevant algorithms published, used color-
coded pictures to visualize the errors induced by those algorithms and identified their
sources. By merging the advantages from different algorithms, we have developed an
improved radiosity algorithm which concerned mainly on the efficiency and accuracy. To
achieve high speed. this algorithm makes use of sophisticated speed-up methods, such as
modified BSP tree traversal algorithms and fast ray tracing visibility test. Together with
fully utilizing the graphics hardware, such as the depth-buffer and Gouraud interpolation,
this algorithm runs four times faster than the other methods. We have aiso developed
another algorithms which is tailored for adaptive environment subdivision. This algorithm
improves the quality of picture generated by automatically subdividing surfaces along the
shadow boundaries in the environment. Lastly, a user friendly graphical interface is
implemented, which makes this package a complete rendering software using the radiosity

method.

TABLE OF CONTENTS

CHAPTER 1 Introduction 1
CHAPTER 2 A Review of the Radiosity Method 4
2.1 Basic Concepts 4
2.2 Algorithms for Form-Factor Computations 7
23 Algorithms for Environment Subdivision 8
CHAPTER 3 Visualization of Errors on Form-Factor Computation 11
3.1 Methods for Form-Factor Computation 11
3.2 Errors in Environment Without Blocking 18
33 Errors in Environment With Blocking 25
34 Summary on the Comparisons of the Three Methods 28
CHAPTER 4 An Efficient Radiosity Algorithm 30
4.1 Hemicube Visibility Test 32

42 Ray Tracing Visibility Test Using a BSP Tree 33

4.3

4.4

Analytical Form-Factor Formula

Experiments and Results

CHAPTER 5 An Adaptive Subdivision Algorithm for Radiosity

5.1

Shadow Generated by Area Light Sources

Penumbra and Umbra Shadow Volume

Finding the Penumbra and Umbra Volume Using BSP Trees
Major Drawback of Chin’s Algorithm

A Fast Area-Driven BSP Tree Traversal

Experiments and Results

CHAPTER 6 System Design Issues

6.1

6.2

6.3

6.4

The Kernel -- an Object-Oriented Graphics Package
[nput and Output Modules
The Radiosity Engine

The Tuning Module

CBAPTER 7 Conclusions

References

Appendix

36

37

39

39

40

45

47

51

53

54

56

57

58

61

62

67

'CHAPTER 1

Introduction

Nowadays most computer graphics hardware supports illumination calculations. The
intensities are usually computed based on simple lighting models, including ambient light,
diffuse reflection and specular reflection. However, most of these calculations have
limitations. Firstly, they only provide point light sources and parallel light sources. Light
sources with area are not supported. Secondly, there is an underlying assumption that
every light source is visible to all surfaces in the environment. Thus, no shadow is
generated. Thirdly, the interactions of light between diffuse surfaces are barely

considered using a global ambient term.

In order to generate more realistic images, the physical behavior of visible light
must be modeled in a more detailed way. Goral et al. [15] and Nishita and Nakamae [20]
proposed a rendering method called radiosirv. The original idea was inspired by the heat
exchange models in thermal engineering. In an in-door scene consisting of diffuse
surfaces, the interactions of light between surfaces are modeled using a set of linear
equations. This method accurately takes into account of the interactions of light between
diffuse surfaces and generates very realistic images for in-door scenes with area light

Sources.

The goal of this project i1s to develop a software package which computes
illumination using the radiosity method. A key issue is to find an efficient and accurate
algorithm for radiosity computation. Firstly, some of the relevant algorithms published
were investigated in detail. By merging ideas from different algorithms, we developed an
improved radiosity algorithm which makes use of the nowadays graphics hardware and
sophisticated speed-up methods. As a result. this algorithm runs four times faster than the
other methods. We have also developed another algorithm which performs accurate
surface subdivision automatically. This algorithm gives better picture quality with
accurate shadow boundaries, at the same time does not require the users to concern about
the low-level implementation details. Lastly, the ideas were implemented into a user

friendly software package which runs on high performance computer graphics platforms.

In Chapter 2, a review on some of the radiosity algorithms published in the literature
is given. Some of the important concepts in the radiosity method, such as the significance

of radiosity and form-factor, are explained in detail.

The quality of the image generated using the radiosity method depends on the
accuracy of form-factors calculated. The violations of the underlying assumptions in
various methods induce errors in the form-factors computed. In order to visualize the
magnitude and orientation of these errors and identify their sources, three of the most
widely used methods on computing the form-factors have been studied: the hemicube
method (8], Wallace’s ray tracing method [30], and Baum’s analytical form-factor
formula [3]. The errors induced by their methods were displayed using color-coded
images. These pictures gave us strong clues to the major causes of the errors. The

visualization process and the results are described in detail in Chapter 3.

In Chapter 4, we describe the improved radiosity algorithm in detail. This algorithm
is based on Cohen’s progressive refinement framework [10] described in Chapter 2. By
combining the advantages of the hemi-cube method, Wallace's ray tracing method and
Baum's analytical form-factor formula. the algorithm runs four times faster than their

methods without sacrificing the quality of the pictures produced.

We have also developed a new version of the radiosity method which produces
accurate radiosity solutions by subdividing surfaces in the environment automatically. It
satisfies those users who would like to pay a higher cost (in terms of computational time
and memory used) in order to obtain better picture quality. The pictures produced will
have accurate shadow boundaries, at the same time the users do not need to concern about

the low-level implementation details. This algorithm is given in detail in Chapter 5.

The last phase of this project was to make the radiosity rendering method available
to end users. Four modules, namely input, tuning, radiosity engine and output, have been
implemented for enhancing the applicability of the software package. The input module
can import files in one of the common scene description formats which are carefully
chosen. The tuning module provides graphical interface for the users to specify the
parameters needed for the radiosity calculations. The radiosity engine performs the
computations. The output module conforms the results of the radiosity calculations
according to Open Inventor [32] format so that the results can be used for various
purposes, such as producing pictures, animations, or for interactive architectural walk-
through. The system design issues of the entire package are described in Chapter 6. In

Chapter 7, a brief summary of this project is given.

CHAPTER 2

A Review of the Radiosity Method

2.1. Basic Concepts

Radiosity is defined as the amount of energy leaving a surface per unit time per unit area.
It is the sum of the rate at which the surface emits energy and the rate it reflects the
energy received from the environment. Assume that each patch in the environment is an

ideal diffuse surface. For surface i, its radiosity can be expressed as in [15]:

Aj
B,- = Ei + P; Z Bij_,“A—."
j i

B; = radiosity of patch i (W/m?)

E; emittance of patch ! (W/m?)

A; = area of patch 7 (m>)

p; = reflectivity of patch i

F;; = the fraction of energy leaving patch j

J
that arrives at patch i

Using the relation that F;;A; = F;_jA;, the interaction of light among all the n

patches in the environment can be expressed as a set of linear equations:

=0 Fy -p P o0 —piFy, B E,
—Pafay I=paFsn o —paFa, B, E,
—pnrn-l —Pu .Fn-l o]"'pn-Fu -1 B'n EII

An approximation of the solution of the equations can be obtained using Gauss-Seidel

iteration.

The most critical step in the radiosity method is the computation of form-factors.

The form-factor from small surface (called parch) i to patch j. denoted as F;_;, is defined

e
as the fraction of energy leaving patch { that arrives at patch j. The illumination of a
receiving patch due to a source patch depends on the radiosity of the source and the
form-factor from the source to the patch. Based on the assumption that all patches are
ideal diffuse (Lambertian) surfaces, the form-factor between two differential areas dA; and
(lAj (Figure 2.1) is found to be:

cosB,cosd;dA,

Fanr-an; = 8= ; I
dA-dA; j TE)’}'j ()

where
8;; = 1 if dA; is visible to dA;, 0 otherwise.

The derivation of Equation 1 can be found in [15].

The form-factor between two finite areas A; and A; can then be obtained by applying

double integration over FdAl._dAj:

Foop - 1 J 5 cos0;cos0;dA dA;
Ai-Aj — Hi-f T AiA ij TC)“?"
iAj ij

Figure 2.1. Geometry for From-Factor Derivation

It 15 noticed that the form-factor formula involves a double integral and thus is
difficult to compute in a straightforward way. Moreover, the computation of form-factors
involves visibility determination. As a result, it is the most time consuming step in the
radiosity method. In addition, a matrix of form-factors must be computed and stored even
though most of them have little effect on the quality of the final image. Many methods
have been suggested for estimating form-factors efficiently. These methods will be

described in the next subsection.

Apart from the estimation of form-factors, many works have been done on
improving the efficiency of the radiosity method. Cohen et al. [10] have developed a
progressive refinement algorithm which avoids the calculation of the entire form-factor
matrix. The algorithm proceeds in iterations. In each round, a bright patch whose light
energy has not yet been taken into account is chosen to shoot its light out. The form-
factors from this patch to all the others are calculated and the intensities of the patches
are updated. Instead of computing and storing n> form-factors, this method only requires
to keep track of n form-factors in each iteration. Furthermore, it converges very fast to
the accurate solution, and the scene being processed can be displayed before an accurate

solution is found.

2.2. Algorithms for Form-Factor Computation

Many methods have been suggested for estimating form-factors efficiently. The hemi-
cube method proposed by Cohen et al. [8] is one of the most widely used methods. The
key assumption of the method is that two patches are tar away from each other. so all the
energy emitted from the source can be thought as emitting from the center of the source.
The form-tactor between the two patches can then be approximated by the form-factor
between a differential area at the center of the source and the destination, which reduces
the double integrals in the form-factor formula into a single integral. A numerical method
1s suggested for the imtegration in the formula. Moreover, the visibility between the
source and a patch is determined by the visibility between the source center and the patch,

The depth-buffer technique for hidden surface removal can be used in this simplified case.

When two patches are close to each other. the errors in the form-factors computed
using the hemi-cube method can be very large. Baum et al. [3] has proposed to use an
analytical form-factor formula for the evaluation of form-factors between differential area
dA; and source patch i This formula assumes that there is no blocking between the
source and the differential area. Otherwise, the source patch has to be repeatedly
subdivided until all the subsources are either completely visible or invisible from dA;.

The form-factor F(M/._A,. is then equal to the sum of the form-factors from dA; to all visible

subsources.

Wallace et al. [30] has suggested a different method for computing form-factors.
Light emitted or reflected by a source patch is assumed to be emitting from several
circular disks which are evenly distributed on the patch. The visibility of a differential
area and a disk is determined by casting a ray from the center of the disk to the area.

The form-factor of the receiving patch is computed by considering all the light received

from the visible disks. Instead of computing the radiosities at the centers of patches and
then obtaining the vertex intensities using interpolation [8]. the radiosities at the vertices
of patches are computed directly in this method. The intensities at the other positions of a
patch are obtained later by making use of the interpolating facility provided by the
graphics hardware. However, ray tracing is a slow process. Moreover, there is an
aliasing problem appeared in Wallace™s algorithm due to the circular disks sampling

method used.

2.3. Algorithms for Environment Subdivision

In order to have accurate shadows in the output, the straightforward radiosity method
requires proper subdivisions of the polygons according to the shadow boundaries. Such
requirement is usual a big burden on a user as a lot of effort and good knowledge of the
implementation details of the radiosity method are needed. Usually, the polygons in the
scene are over subdivided, which leads to inefficiency in later computation. It is highly
desirable that the subdivisions of surfaces for obtaining accurate shadows are determined
automatically. Cohen et al. have proposed an adaptively subdividing scheme [9] which
computes the gradient of radiosity over every patches. A patch is recursively subdivided
until its radiosity gradient is less than a threshold value. The method improves the quality

of a picture without increasing the size of the form-factor matrix.

Campbell et al. [5] used a set of point light sources to approximate an area light
source. This method works well for small area light sources. For larger sources, the

number of point light sources needed is high, and the shadow boundaries created are too

fine.

Lischinski et al. [17] have proposed a discontinuity meshing method for radiosity
algorithm. The method classifies the shadow boundaries in an environment into three
types: (i) sharp shadow boundaries induced by eédges or vertices of occluders lying on the
receiving surface: (ii) edge-vertex (EV) events, where the soft shadow boundaries are
caused by edges or vertices of occluders that do not touch the receiver but intervene
between 1t and the light source: (i) edge-edge-edge (EEE) events. where shadow
boundaries are caused by the edges of more than two occluders. To locate the shadow
boundaries caused by the EV events, they stored the environment in a BSP tree [13] and
the tree is used to obtain a front-to-back ordering of surfaces with respect to each sources’
vertices and edges. Surfaces are then clipped by the shadow volumes formed by the
occluders between 1itself and the light sources. The EEE events are too complicated to be
found out by their method. After all shadow boundaries are found on a surface, the

surface is triangulated and the radiosity of receiving vertices are updated.

Chin [7] has developed a similar algorithms to locate the soft shadow boundaries.
The environment is also stored in a BSP tree. For each light source being shot, a front-
to-back ordering of the receiving surfaces is obtained. The shadow volumes cast by the
first surface in the ordering are created. These shadow volumes are represented by two
BSP trees: the penumbra BSP tree represents the penumbra area of the shadows, and the
umbra BSP tree represents the umbra area of the shadows. The second surface in the
ordering is clipped by these two shadow volumes, and the two BSP trees are then
enlarged by merging the second surface’s shadow volumes. The third surface in the
ordering is processed and so on. This method is fast, and the shadow boundaries can be
determined accurately. However, it suffers from a major problem: in order to have a
correct front-to-back ordering, if a light source intersects with any surface’s extending

plane, the light source is needed to be divided. In a complex environment, this will cause

too many subdivisions of light sources. As a result, the clipping of receiving surfaces are

far too fine.

Many researchers have studied how to illuminate a scene with both diffuse and
specular reflection [16,24.2527.31]. These works make the radiosity method become an
important technique in rendering. However, the enhancement of the radiosity method

with specular refection is not the focus of this project.

10

CHAPTER 3

Visualization of Errors on Form-Factor
Computation

The quality of the image generated using the radiosity method depends on the accuracy of
form-factors calculated. The violations of the underlying assumptions in various methods
induce errors in the form-factors computed. Our objective was to visualize the magnitude
and orientation of these errors and identify their sources. In addition, guidelines for

avoiding large errors in applying these methods are proposed.

We have studied three of the most widely used methods for computing form-factors:
the hemicube method, Wallace’s ray tracing method, and Baum’s analytical form-factor
formula. Attention was paid to the normalized distance between the source and the

destination, the aspect ratio of the source patch, and the aliasing effects.

3.1. Methods for Form-Factor Computation

The hemi-cube method proposed by Cohen et al. [8] is one of the most widely used

methods. The key assumption of the method is that two patches are far away from each

11

other, so all the energy emitted from the source can be thought as emitting from the
center of the source. The form-factor between two patches can then be approximated by
the form-factor between a differential area at the center of the source and the destination.
Moreover, the visibility between the source and a patch is determined by the visibility
between the source center and the patch. Based on this assumption, the form-factor

between two patches is:

cosB, cos0;dA;
Fajaj = Faajoa; = J S, ey (2)
Aj Try

A numerical method 1s suggested for the evaluation of the integration in Equation 2.
It is observed that when two patches are projected onto a surrounding surface of a source,
if their projections occupy the same area and location, the form-factors between the
source and the patches will be equal [8]. Therefore, patches are projected onto a hemi-
cube placed above the center of the source. The cube is discretized into small elements
called pixels. The form factor between the source center and a pixel, denoted dF, is
called deltu form-factors. The delta form-factors are pre-computed. The form-factor from
source patch / to destination patch j is then equal to the sum of dF associated with the
pixels covered by the projected image of patch j. Visibility of patches are determined
using the depth-buffer technique for hidden surface removal. As projections and depth-
buffer operations are supported by most graphics hardware, the hemi-cube method runs

efficiently in graphics machines. This approach really makes the radiosity method

practical in complex environment.

A disadvantage of the hemi-cube method is that the basic assumption, i.e., the source

and destination is far away from each other, does not always hold. When the source and

12

destination are too close, the form-factor computed is incorrect (Figure 3.1 and Figure
3.2). The normalized distance in Figure 3.2 is the distance between the source and the

destination, divided by the area of the scurce. A more detailed discussion on the accuracy

of the hemi-cube method can be found in [3].

v

s
e

!
|
|
A
|

s

Radial-Center Radial-Corner Radial-Edge
b 5 v
Perp-Corner Para-Corner Para-Edge
Figure 3.1. Orientations between the source and receiving patch.
a Radial-Center x Radial-Cormer # Radial-Edge
- Perp-Corner 4 Para-Corner + Para-Edge
100 4
75 -\ A
0 3\\
25
- ~
% error 0 X\ iﬁ%b’ L
=25 35
& g
-50 " e
Vi 4
=75
-~100 —ﬁJ
0.1 1 10
Nommalized Distance
Figure 3.2. Relative errors in the form-factors computed using Equation 2 (both the

source and the receiving patch are of aspect ratio 1:1).

13

The resolution of the hemi-cube also affects the accuracy of the form-factors
calculated. When the resolution is low, artifact caused by the aliasing effect is found in
the 1mage generated. Figure 3.3 shows the relative errors of form-factors due to the
aliasing effect. The source has the same aspect ratio and size as the one in Figure 3.1,
and the area of the destination is one-fourth of the area of the source. The only
difference is that Figure 3.2 is obtained by using Equation 2 directly, whereas Figure 3.3
is obtained by placing a hemi-cube over the source. The resolution of the top plane of the
hemi-cube 1s 500x500. Note that when the destination patch ts far away from the source,
its projection may only partially overlap with one or few pixels. Thus, the relative errors
caused by low resolution are indeed magnified when the patches are far from each other.
Fortunately, when a patch is far away from a source, its form-factor is small and a large

relative error will not seriously affect the quality of the image.

100 —=

75 %

50 A \ iy
25 %

% error 0 4—-5 5= %

225 Nt]

50 | |

75
-100 ‘

0.1 1 10

Normalized Distance

Figure 3.3. Relative errors in the form-factor values computed by the hemi-cube
method.

When two patches are close to each other, the errors in the form-factors computed
using the hemi-cube method can be very large. Baum et al. [3] has proposed to use an

analytical method for the evaluation of delta form-factors when two patches are closer

14

than a threshold value. The formula of form-factor between differential area dAj and

patch i as shown in Figure 3.4 is:

]

where

G; is the set of edges in patch i;

N; is the normal of differential surface a’Aj;

I', is a vector with magnitude equal to the angle ¥
(in radians) and direction equal to the cross product
of the vectors R, and R, shown in Figure 3.4.

The derivation of Equation 3 can be found in [26].

This formula assumes that there is no blocking between the source and the
differential area. Otherwise, the source patch is subdivided until all the subpatches are
either completely visible or invisible from dA;. The form-factor Fa;-a; 1s then equal to

the sum of the form-factors from dA; to all visible subpatches.

Figure 3.4. Geometry for evaluating analytical form-factor

Wallace et al. [30] has suggested a different method for computing form-factors.
Light emitted or reflected by a source patch is assumed to be emitting from several

circular disks which are evenly distributed on the patch. The visibility of a differential

15

area and a disk is determined by casting a ray from the center of the disk to the area.
The form-factor of the receiving patch is computed by considering all the light received

from the visible disks.

The form-factor between circular disk k and differential area dA; (Figure 3.5a) can

be approximated as:

F _ dAjcosBjcosdy
A Tl + Ay @
The form-factor between source patch 7 and vertex j (Figure 3.5b) is:
1 c0s6 ;. cosBiy
Faan, =dA; * =¥ §——
Aj-dA; J N % k 5 Ai (5)
nry + -/
N

where

N = number of sample points used on the source patch
O, = 1 if the ray can reach sample point k;
0 otherwise

Instead of computing the radiosities at the centers of patches and then obtaining the
vertex intensities using interpolation [8], the radiosities at the vertices of patches are
computed directly in this method. The intensities at the other positions of a patch are
obtained later by making use of the interpolating facility provided by the graphics

hardware.

16

(@) (b)

Figure 3.5. a) Geometry between an arbitrarily oriented disk and a differential area.

b) Geometry between a source patch (approximated by multiple disks)
and a differential area.

When a receiving vertex is far away from a source, the errors induced by Equation 4
and 5 are negligible. However, when a receiving vertex is close to the surface of a source
patch, this method induced relatively large errors. The errors are caused by two levels of
approximation. The first level is the approximate formula from a circular disk to a vertex

(Equation 4). Figure 3.6 shows the errors of the form-factors obtained using Equation 4.

Distance from source to receiving area (1) IR 5R 10R
Average relative errors

of Wallace’s formula (Equation 4) 55.38% 5.55% 1.44%
Max. relative errors 99.97% 11.38% | 2.96%

Figure 3.6. Errors induced by Wallace’s formula over the range 0 <6, <89,
0<6; <45. R is the radius of the source. (8, 6; are defined in Figure
3.5)

We have derived a new approximate formula for estimating the form-factor from a

disk to a differential area:

17

dA jc0s6;costy r? + R? — 2rRsing;

(6)

Fk-j = 2 - X
nre + Ag — 2mrRsin6, r2 + R? + 2rRsin;

A detailed derivation can be found in the appendix. The computation of form-factors
using this formula runs as fast as Wallace’s one, but more accurate. The errors of
this formula is shown in Figure 3.7.

Distance from source to receiving area (r) 1R SR 10R
Average relative errors

of Equation 6 3271% | 1.13% | 0.28%
Max. relative errors 98.25% 4.0% 1.0%

Figure 3.7. Error analysis of the new approximate form-factor formula.

The second level of approximation occurs when Wallace’s algorithm treats a
polygonal subsource as a circular disk. The shape of the source patch is not equal to the
union of the circular disks. Some regions of the source are not covered and some regions
are covered more than once. As a result, aliasing effect is induced. Wallace et al. also
have mentioned this kind of errors in their paper [30]. They suggested to subdivide the
source adaptively for each receiving vertex such that more sample disks are placed near

the vertex if it is too close from the source.

3.2. Errors in Environment Without Blocking

In this section, errors induced by the three methods for form-factor computation are
studied. For comparison purpose, it is assumed that there is a light-emitting patch i in the
environment (Figure 3.8). The various methods are applied to calculate the energy
received by a very small patch dA; in the vicinity of patch i. The area of patch i is one

unit and it emits one unit of energy per unit time (i.e., B;A; = 1). The area of patch dA;

18

is 0.0001 unit and it always points at the center of patch i. The formulas of the energy
received by patch dA; using the three different methods are given below. Note that in
this particular case, the form factor is equal to the energy received and the analytical

method gives the exact value.

(1) The Hemi-Cube method (HC)

BAF;

cosB,.cosB;dA;
= by Eq. 2 and Eq. 1
TCer
cosB.dA;
ﬂr%j

where ¢ is the center of patch i, and Tej 18
the distance between ¢ and j.

(2) The Analytical formula (ANA)
BAFi

=Fi-dAj
dA,
A;

where F dAj-i is given by Equation 3.

=FdAj-i *

(3) The Ray Tracing method (RT)

BiAiFi g,

cos6;,cos8

2 A
Tcrjk + W
where N is the number of sample points. The
distributions of 3 or 9 sample points on source
patch of various aspect ratio are shown in
Figure 3.9.

1 N
:dAJ*NZ by Eq. 5

k=1

19

dAa)
f cnergy received = X unit
Nj

energy cmitted = | unit

Figure 3.8. Energy received at a point over a light source.

Figure 3.9. Distribution of sample points on source patches.

To visualize the errors, the "isoenergy” surface around the source patch is displayed.
In Figure 3.10, the locations where patch dA; receives 0.8E-5 unit of energy is drawn.
The aspect ratio of the source patch is 1:1. The left one is the correct answer which is
obtained using the ANA method. The right one is obtained using the HC method. As the
size and shape of the two surfaces are similar, the errors induced by the HC method are

negligible in this case.

The displays in Figure 3.11 are obtained in the same way except that the energy
received is raised to 3.0E-5 unit. The isoenergy surfaces obtained are closer to the source
patch. Note that the HC method overestimates the energy received right above the center
of the source patch, and underestimates the energy received around the edges of the
source patch. This is due to the assumption of the HC method that energy is emitted

from the center of the source patch. In Figure 3.12, the isoenergy surfaces of the same

20

energy level as Figure 3.10 are displayed for a source patch of aspect ratio 1:3. As the
HC method does not take into account of the shape of the source patch, there is no

surprise that the errors increase when the aspect ratio of the source paich becomes larger.

Figure 3.10. Isoenergy surface where 0.8E-5 unit of energy received.

21

Figure 3.11. Isoenergy surface where 3.0E-5 unit of energy received.

Figure 3.12. Isoenergy surface where 0.8E-5 unit of energy received, with source
patch aspect ratio 1:3.

22

In order to study how the errors induced by the HC method are affected by the
distance, the energy received by patch dA; at different locations of a cross section of
space above the source patch are computed. The magnitude of the energy is rendered
using a color coding. White color is used to represent the highest energy received, and
blue color to represent the Jowest. The cross section above a source patch of aspect ratio
1:3, together with the color scale ruler, is shown in Figure 3.13. Again, the one on the
left 1s obtained using the ANA method and the one on the right is obtained using the HC

method. It is clear that the errors diminish when the distance becomes larger.

The cross sections are computed again using the RT method. The result is shown in
Figure 3.14, with a source patch of aspect ratio 1:3. The left one is obtained using the
ANA method and the right one is obtained using the RT method with three sample points.
The right one is quite similar to the correct one on the left hand side. However, aliasing
is observed at the positions very close to the surface of the source patch. In Figure 3.15,
the cross sections for a source patch of aspect ratio 1:9 is drawn. The top one is obtained
using the ANA method; the pictures in the bottom row are obtained using the RT method
with three and nine sample points, respectively. The result shown in the bottom left
picture is not acceptable as too few sample points are used. Also, the aliasing effect in
these drawings is significant. Further study shows that the distribution of the sample
points plays an important role in the magnitude of the aliasing effect. As a general
guideline, the sample points should be evenly distributed and each represents the radiosity
of a squarely region of the source patch. Moreover, it is found that the RT formula
(Equation 4) may underestimate the amount of light by as much as 15% at some positions
close to the source patch [33]. This explains why the bottom displays are not as bright as

the upper one, especially near the surface of the source.

23

Figure 3.13. Cross section energy diagram obtained by the HC method.

Figure 3.14. Cross section energy diagram obtained by the RT method.

Figure 3.15. Cross section energy diagram obtained by the RT method, with source
patch aspect ratio 1:9.

3.3. Errors in Environment With Blocking

[In an environment with blocking, it is necessary to perform visibility test before
application of the form-factor formulas described in previous section. In the HC method,
the entire patch i is assumed visible to dA; if the center of dA; can been seen from the
center of A,. In the RT method, a light-emitting disk is assumed entirely visible to dA; if
the center of dA; can been seen from the center of the disk. In the ANA method, if paich
i is not entirely visible from the center of dAj, it is subdivided recursively until each
component is either completely visible or invisible. The total energy received is then

equal to the sum of the energy received from the visible components.

25

In Figure 3.16, there are four displays of the energy received by dA; at locations of
a cross section of space above patch i. The size of patch / is 1x1 unit area. An obstacle

patch of size 0.5x0.5 unit area is placed at 0.25 unit length above the center of patch i.

The upper left display is obtained using the ANA method which gives the correct
amount of energy received by dA;. Note that only a small area right behind the obstacle
is completely dark and the amount of energy changes continuously. The upper right is
obtained using the HC method. As light is assumed to be emitting from the center, a very
large shadow area behind the obstacle is completely dark. Comparing with the upper left,
it is obvious that the HC method underestimates the amount of energy in the shadow area.
On the other hand, the method overestimates the value in the vicinity of the shadow
which is marginally visible from the center of the patch. These errors are caused by the

fact that the method fails to take into account of partial blocking in the formulation.

The lower left display in Figure 3.16 is obtained using the RT method with nine
sample disks. Note that each disk induces sharp shadow as in the case of the HC method
because the entire disk is either seen or unseen from a location. Discrete change of
intensity is observed at the intersections of the shadow boundaries. Nonetheless, this

display is closer to the correct one than the display obtained using the HC method.

It is interesting to find out why the RT method is more accurate than the HC
method. The study here indicates that it is not due to the use of ray tracing technique for
visibility test, nor the use of circular disks in radiosity calculation. The critical factor is
that the RT method assumes that light is emitted from nine disks on the source rather
than from the center of the source as assumed in the HC method. The lower right display
of Figure 3.16 is obtained using the HC method after cutting patch i into nine pieces.

This display is as good as the one obtained using the RT method.

The displays shown in Figure 3.17 are obtained in the same way as those in Figure
3.12 except that the obstacle is shifted to the right 0.25 unit length. These displays

confirm our findings in the above discussions.

Figure 3.16. Cross section energy diagrams with obstacle.

27

Figure 3.17. Cross section energy diagrams with shifted obstacle.

3.4. Summary on the Comparisons of the Three Methods

The ANA method is used to obtain the exact form-factors in the comparison. The
computation time is acceptable if there is no blocking between the source and destination.
However, in an environment with blocking, the process of finding the visible portion of
the source patches is time consuming. In a complex environment, this process is
extremely slow even when sophisticated data structures, such as binary-space-partition

trees, are used. Thus, the ANA method is generally not practical.

Due to the assumption that light emits from the center of a source patch, the HC
method gives accurate results only if the aspect ratio of the source patch is close to one,

the normalized distance between the source patch and the receiving patch is large, and

there is no partial blocking of the source patch. Moreover, the resolution of the hemi-
cube has to be high enough. From our experience, the method gives acceptable results if
the following conditions are satisfied: (i) the aspect ratio is betweer 1/2 and 2; (ii) the
normalized distance is greater than 0.3; (iii) the amount of light energy emitted from any
single subsource 1s less than 5% of the total light energy emitted in the environment; (iv)
the resolution of the hemi-cube surfaces is at least 500x500. A source patch shall be
divided if any of the first three conditions is violated. A major advantage of the HC
method is that it is by far faster than the other two methods as it can be implemented

using the facility supported by graphics hardware.

The RT method generates more satisfactory results than the HC method mainly
because it uses multiple circular disks to approximate a source patch. Another major
improvement is that the method computes the vertex radiosity instead of the patch
radiosity. Such modification enables direct application of the intensity interpolation
facility provided by graphics hardware. As ray tracing is a time consuming process, this
method in general runs slower than the HC method. Moreover, aliasing is found in
locations very close to a source patch. To obtain good results in applying this method,
some guidelines similar to those given for the HC method should be followed. For
example, each disk is made associated with a region similar to a square; each disk emits
no more than 5% of total light energy; the normalized distance between a disk and a

vertex should be greater than 0.3.

29

CHAPTER 4

An Efficient Radiosity Algorithm

Having studied the most popular algorithms for computing form-factors, we come up with
the following conclusions: (i) the hemicube algorithm is efficient and simple. However, it
suffers from two major limitations. Firstly, aliasing appears in the projected images due
to the discrete nature of the hemicube pixels. As a result, the form-factors computed are
inaccurate. Secondly, Gouraud shading is commonly used to render the images in most
graphics workstations. This shading algorithm makes use of the vertex intensities of the
polygon being rendered. However, the hemicube algorithm computes only the patch
radiosities. The vertex intensities are obtained by interpolating the patch radiosities. This
interpolation may induce another level of errors; (i) Wallace’s ray tracing algorithm
overcomes hemicube’s problem. However, ray tracing is a slow process. Moreover, there

is an aliasing problem with Wallace’s algorithm due to the circular disks sampling method

in their algorithm.

Base on the progressive refinement [10] framework, we tried to combine the
hemicube algorithm and Wallace’s ray tracing algorithm. By adding several
modifications, a complete radiosity algorithm is proposed which runs much faster than

either of the above methods alone without sacrificing the quality of the pictures produced.

30

Firstly, we observed that ray tracing is not necessary for most vertices. A modified
hemicube method can be used to perform a visibility pre-test before the rays are cast. As
a result, the number of rays traced is reduced substantially. Secondly, when ray tracing is
performed, a binary space partitioning (BSP) tree [13] is used to sort the patches in a
front-to-back order according to the orientation of the ray being traced. This order helps
us reduce the number of object-ray intersection calculations. Thirdly, there is an aliasing
problem with Wallace’s algorithm due to the sampling circular disk method used. This
problem is solved by replacing the Wallace’s form-factor formula with Baum’s analytical

formula. The resulting algorithm is described in pseudo code below:

Input : a scene represented by convex polygons
Qutpur : radiosities of the polygons’ vertices

Radiosity ()

{
pre-processing, such as building the BSP tree;
for each source of large radiosity do {
sub-divide the source into several subsources;
for each subsource do {
project all patches onto the hemicube over the subsource
and determine the vertices’ visibility;
for each vertex with ambiguous visibility {
perform ray tracing visibility test, using the BSP tree;
}
for each vertex visible from the subsource {
use Baum’s analytical formula to compute the form-factor
between this vertex and the subsource;
update the vertex’s radiosity;
}
}

31

4.1. Hemicube Visibility Test

In Wallace’s algorithm, a light source is divided into several (circular) subsources. The
visibility between a subsource and a vertex is determined by ray tracing. Rays are cast
from the center of a subsource to all vertices. Although this method determine accurately
the visibility between the center of a subsource and a vertex, the ray tracing step is a slow

process.

We suggest to perform a hemicube visibility pre-test for each subsource. Before
rays are cast from a subsource, a hemicube is placed above the subsource and all the
other patches are projected onto the hemicube. Each hemicube pixel covered by a patch’s
projected image stores the id of the patch. When two projected images occupy the same

pixel, the id of the one which is closer to the subsource is stored.

To determine the visibility of a vertex, we locate the hemicube pixel where this
vertex is projected onto. The value (the patch id) stored in that pixel is checked against
the id of the patch containing the vertex. If they are equal, the vertex is visible from the
subsource. If they are not equal, the eight neighbouring pixels are checked. When none
of them has stored the id of the patch containing the vertex, the vertex is invisible from

the subsource. Otherwise, the visibility of this vertex is determined by ray tracing.

The eight neighbouring pixels have to be checked for avoiding the aliasing errors. If
one of the eight neighbouring pixels has stored the id of the patch containing the vertex,

the vertex is marginally visible or invisible from the subsource. In this case, ray tracing

is needed to determine the visibility.

Results of experiments showed that in most cases, the visibility of a vertex can be

determined by the hemicube pre-test without ray tracing. In addition, the hemicube can

32

be implemented by the graphics hardware. We have implemented the algorithm on a
Silicon Graphics IRIS Indigo/XS24 workstation. Two simple scenes were tried, and the
time used to shoot the light of one subsource is recorded and shown in Figure 4.1. These
data confirm that the hemicube pre-test does speed up the visibility determination process.
However, the set-up overhead in the software implementation of the pre-test is not

justified when the number of vertices is small.

Number of vertices in the scene 796 4311
ure ray tracing visibility test 1.2 21.6

with hardware hemicube pre-test 1.2 6.8

with software hemicube pre-test 5.3 12.0

Figure 4.1. Time (in sec) used to shoot the light of one subsource.

4.2. Ray Tracing Visibility Test Using a BSP Tree

When a vertex’s visibility cannot be determined by the hemicube pre-test, ray tracing
visibility test is performed. There are many speed-up methods for ray tracing suggested
in literature [4,12]. Since in the radiosity algorithm all the objects are represented with

polygonal faces, we propose a new speed-up method which uses a BSP tree [13].

A BSP tree is a binary tree which represents a partitioning of space by planes. Each
plane is spanned from a polygon in the scene. The root of the tree is a polygon selected
from the scene. This polygon’s plane divides the space into two half-spaces. Each
subtree of the root node represents a half-space. All the polygons lying in front of the
root’s plane are assigned to the left subtree of the root. Similarly, all the polygons lying
behind the root’s plane are assigned to the right subtree of the root. A polygon that lies

on both sides of the root’s plane is split by the plane and each piece is assigned to the

33

appropriate half-space. Both the left subtree and the right subtree of the root are
constructed recursively in the same fashion. Figure 4.2(a) shows a 2D example of a scene
and Figure 4.2(b) shows one possible BSP tree of the scene. Given "an arbitrary
viewpoint, a modified inorder traversal of the BSP tree provides a front-to-back ordering
of the polygons with respect to this viewpoint [6]. Figure 4.2(c) shows the front-to-back
order of the polygons obtained by an inorder traversal of the BSP tree guided by the view

point S. Further details of BSP tree can be found in [6,13].

ﬁon;// \\ffck
/\/

S Sa 5b

3 ~ //
] g Tt
>\>/2 6
> 5b465321

4

e (a) (b) ©

Figure 4.2. (a) A two dimensional scene;
(b) a BSP tree for the scene;
(c) a front-to-back ordering obtained with respect to S.

In our algorithm, a BSP tree is built for the input scene at the beginning. In each
shooting process, when a ray is cast from a subsource to a vertex, the ray’s starting
position is used to guide the BSP tree traversal and obtain a front-to-back order of the
patches. The object-ray intersection calculations are performed according to the order
obtained until the first intersection is found. If the first intersection occurs at the vertex,
the vertex is visible from the subsource. Otherwise, it is invisible. Following the order

obtained from the BSP tree traversal ensures that the first intersection found is the closest

intersection along the ray.

We can use the direction of the ray to modify the BSP tree traversal such that the
number of intersection calculations is further reduced. For example, as shown in Figure
4.3(a), a ray starting from point S is being traced. At a certain step the BSP tree traversal
will reach the node containing the plane P. Let N, be the node. Since S lies on the back
of the plane P, the ordinary BSP tree traversal will visit the right subtree of N, first, and
then process N, (i.e. test the patches lying on P for intersection), and finally visit the left
subtree of N,. However, as the ray is going away from P, the receiving vertex will not
be on the plane P or in the left subtree of N,. Moreover, the patches on plane P or in the
left subtree of N, will never block the ray. Therefore, those patches can be ignored.
After the right subtree of N, is visited, the BSP tree traversal can back-track two levels to
the parent of N,. This reduces the number of patches to be tested. Figure 4.3(b) and (c)
show the other possible orientation between a plane and a ray, and state the corresponding
actions. Empirical results show that this BSP tree speed-up method reduces nearly half of

the time needed by the straightforward ray tracing process.

Visit right subtree of N,

Visit right subtree of N, only Visit right subtree of N, only Process node N,
the BSP tree)
Visit left subtree of N,
(a) (b) (©)

Figure 4.3. Different cases which will be encountered and the corresponding actions
during the ray tracing visibility test with a BSP tree.

Note that this BSP tree speed-up method is a special case of the object space
subdivision method suggested in the literature [14]. In that method, the object space is

equally divided into enough subspaces using the octree until each subspace contains only

35

a few number of objects. When a ray being traced enters a subspace, only the objects
inside the subspace are tested for intersection. If the ray does not hit any objects, the
algorithm should find the next subspace into which the ray moves. The process of finding
the next subspace is difficult and time consuming. Moreover, using octree to divide the
object space usually results in too many subdivisions. In our BSP tree speed-up method,
the space subdivision is determined by the geometry of the polygonal faces. Paterson and
Yao [23] showed that an O(n?)-sized BSP tree can be built using the randomized method,

where n is the number of planar facets.

It should be pointed out that this BSP tree speed-up method is suitable for a scene
which contains only polygonal faces. If an object (such as a sphere or a cylinder) is not
represented with polygons, the algorithm should use other ray tracing speed-up methods.
In a scene which contains only polygonal faces, this BSP tree speed-up method is simple
and efficient. Another advantage of this method is that the BSP tree built can be used for

other purposes, such as the adaptive mesh generation proposed in [5].

4.3. Analytical Form-Factor Formula

For each vertex visible from the subsource being shot, the form-factor between this vertex
and the subsource is needed to be computed. In our algorithm, the Baum’s analytical

formula [3] is used. In this case, the actual shape of the subsource is accurately taken

into account

To investigate the execution overhead of using Baum’s formula, the form-factors
from a square source patch to a differential area in 4140 different orientations and

positions are computed. The computation took 0.9 second when Baum’s formula was

36

used. When the source was assumed to be a circular disk and Wallace’s formula was
used, the computation took 0.1 second. Although the Baum’s formula is 9 times slower

than Wallace’s one, this part of computation is only a ‘small portion in the entire process

of the radiosity algorithm.

4.4, Experiments and Results

We have implemented both the original Wallace’s algorithm and our improved version.
In Figure 4.5, a room is rendered using these two algorithms. It contains 96 patches
before subdivision and contains 3642 subpatches after subdivision. Totally 4311 vertices
are rendered (because most subpatches share vertices). Pictures on the left column are
produced by Wallace’s algorithm. Visibility is determined by ray tracing, and the form-
factors are calculated by their approximate formula. Pictures on the right column are
produced by our algorithm. All the three improvements mentioned in this chapter are
implemented. There is no obvious difference between these two set of pictures. Figure
4.4 shows the execution time used for producing these picture. Our algorithm runs about

four times faster than the original one.

Number of subsources shot 9 18 33
Time (sec) used by Wallace’s algorithm | 171.8 | 302.2 | 407.8
| Time (sec) used by our algorithm 354 75.8 | 107.2

Figure 4.4. cpu times used for producing Figure 4.5.

37

()

(b)

(©)

Figure 4.5. A room after the light of
(a) 1 source (totally 9 subsources) is shot;

(b) 2 sources (totally 18 subsources) are shot;
(c) 5 sources (totally 33 subsources) are shot.

38

CHAPTER 5

An Adaptive Subdivision Algorithm for
Radiosity

5.1. Shadow Generated by Area Light Sources

As mentioned in Chapter 2, in order to have a high quality output, it is highly desirable
that the subdivisions of surfaces for obtaining accurate shadows can be performed
automatically. Many methods have been published for finding the shadow boundaries in

an environment with point light sources [12,6].

In an environment containing area light sources, the determination of shadow
boundaries is more difficult. A point in the environment may be either visible to an entire
light source, totally invisible from the light source, or visible to a portion of the light
source. In the latter case, it Is necessary to determine which portion of the area light

source is visible from the point. Such computation usually requires a lot of effort.

Many methods for locating the shadow boundaries induced by an area light source
make use of the concepts of penumbra volume and umbra volume. Section 5.2 gives the

definitions of these two terms and their significance.

39

Chin et al. [7] has proposed an algorithm to find the shadow boundaries induced by
area light sources. The algorithm makes use of the penumbra and umbra volumes which
are represented using BSP trees. The algorithm is described in detail in Section 5.3. A
major shortcoming of the algorithm is explained in Section 5.4. A new algorithm which
overcomes the shortcoming in Chin's method is described in Section 5.5. This new
algorithm runs much faster than the original version. Experimental results on the

performance of the improved algorithm are described in Section 5.6.

5.2. Penumbra and Umbra Shadow Volume

Given a point in an environment, it is said to be inside a light source’s umbra if the light
source is completely invisible to it. A point is said to be inside a light source’s penumbra

if the light source is partially visible to it.

For each polygon in the scene, there is a penumbra volume and an umbra volume of
this polygon with respect to each area light source. If a point is in the polygon’s umbra
volume, the point is totally blocked from the light source by this polygon. Similarly, if a
point is in the polygon’s penumbra volume, the point is partially blocked from the light

source by this polygon.

According to [7], given a convex polygon and a convex area light source, if the
spanning plane of the polygon does not divide the light source and vice versa, the
penumbra and umbra shadow volumes of the polygon with respect to the area light source
can be constructed from three kinds of planes. The scene polygon plane is the plane of
the polygon itself. This plane divides the entire space into two halves: a positive space

and a negative space. With the assumption that the area source does not cross a scene

40

polygon plane, the half space containing the source is defined as the polygon’s positive
space. The light-source vertex plane is defined as the plane spanned by a vertex of the
fight source and an edge of the polygon. This plane divides the space into two halves and
the half space containing the polygon is defined as the light-source vertex plane’s negative
space. The light-source edge plane is defined as the plane spanned by an edge of the
light source and a vertex of the polygon. Similarly, the half space containing the polygon

is defined as the light-source edge plane’s negative space.

The penumbra volume is the intersection of the polygon’s negative half-space and
the negative half-spaces of certain light-source vertex planes and light-source edge planes.
The light-source vertex planes and light-source edge planes are those with the vertices of

the light source entirely containing in the plane’s positive half-space or on the plane.

The umbra volume, which is entirely contained within the penumbra volume, is the
intersection of the polygon’s negative half-space with the negative half-spaces of certain
light-source vertex planes. The light-source vertex planes are those with the vertices of
the light source entirely containing in the plane’s negative haif-space or on the plane. No

light-source edge planes contribute to the umbra volume.

Figure 5.1 gives a two dimensional example showing the penumbra and umbra

volumes of a line segment P with respect to a line segment light source S.

41

N 7
N - ! \
s g * N // '
. 4 P h ~ N 1 - P \‘
P N I—_—_—\
) ~ 7
-, N~ '
. -, N « I’ v
, ~ N ! \\
7 Penumbra volume AN / Umbra volume:

~ 1 \
- N i \

Figure 5.1. The penumbra and umbra volume of line segment P with respect to light

source S.

5.3. Finding the Penumbra and Umbra Volume Using BSP
Trees

Chin et al. [7] proposed an algorithm to find the shadow volumes induced by area light
sources. Their method uses two BSP trees to represent the penumbra and umbra volumes
with respect to an area light source. The following gives the pseudo code of a
progressive refinement method for radiosity computation which incorporates Chin’s

Algorithm for guiding the subdivisions.

42

Input : a scene represented by convex polygons
Quitput : fragmented polygons and radiosities of the polygons’ vertices

Radiosity ()
/ :
construct a BSP tree containing all polygons in the scene;
Jor each light source S do {
if S intersects with a scene polygon plane then

divide S by this plane;
Y

Jor each resulting light source S,
in the descending order of light intensiry, do {

obtain a front-to-back ordering of polygons
with respect to the center of S by using the BSP tree;

PenumbraTree := UmbraTree := empty;

for each polygon, in the front-to-back order defined by
traversing the BSP tree using S, do

divide the polygon according to
the PenumbraTree and UmbraTree;

update the radiosities of the polygon vertices;
Enlarge the PenumbraTree and UmbraTree by taking

into account the shadow volumes of the polygon
with respect to S;

At the beginning, a BSP tree is built to store the space partitioning by the planes of
all scene polygons. During each iteration in progressive refinement, when a light source
is chosen to shoot out its energy, this BSP tree is used to find out a front-to-back ordering
of all the polygons with respect to the source’s center. For each polygon in the ordering,
this method divides it into completely visible, partially visible and completely invisible
fragments according to the penumbra and umbra trees built so far. Lastly, the two trees

are enlarged by merging themselves with the shadow volumes of the polygon being

43

processed with respect to the light source being shot.

The penumbra volume and umbra volume are represented with BSP trees in the
algorithm. Figure 5.2 is a simple example showing how to represent the shadow volumes
with BSP trees. New nodes with a label out or in are added to an ordinary BSP tree as
leaves. An out node represents a region which is outside the shadow volume represented
by the tree, and an in node represents a region inside the shadow volume. To divide a
polygon into fragments which are either completely visible, partially visible or completely
invisible, the polygon is filtered down the tree and clipped by the tree node’s planes if it
is intersected by the planes. The process is performed recursively until each fragment

reaches an out node or an in node.

S
AN 7 + -
PN pd \
e h N out P
(a) ,_/_L\
\ ’ 4 N //, /
N N 7
Y v
b .- “.a out
Lo Penumbra volume N . /
-) out in
S
+ -
! 1 / L\
/ \ out P
U \
(b) ;P / \
~. _ ! 7

=4 '\ out

v
y o / \

1
) Umbra volume:

‘ out in

1
1 \

Figure 5.2. (a) A BSP tree representing a penumbra shadow volume; (b) A BSP
tree representing an umbra shadow volume.

For the first polygon in the front-to-back ordering, no shadow will be cast on it due
to this light source. The algorithm updates the vertices’ radiosities of the polygon. After
that, the shadow volume cast by this polygon is worked out and is represented by the
penumbra BSP tree and the umbra BSP tree. The second polygon in the front-to-back
ordering 1s then divided by these two shadow volume trees for obtaining accurate shadow
boundaries. The vertices’ radiosities of the polygon are updated accordingly and the two
shadow volume trees are enlarged by merging themselves with the shadow volumes cast
by the polygon. The third polygon in the front-to-back ordering is then processed and so

on.

When a vertex of a patch outside the penumbra volume is completely visible from
anywhere on the source, the form-factor between this vertex and the source can be
obtained analytically. When a vertex of a patch inside the umbra volume is totally
invisible from the source, no energy is received by this vertex from the source. In the
remaining case, the source is partially visible from a vertex of a patch inside the
penumbra volume but outside the umbra volume. In Chin’s algorithm, such a patch is
further divided into a grid of small subpatches and the radiosity of each subpatch’s vertex
is computed. The portion of the area source which is visible to a vertex is determined by
traversing the BSP tree of all scene polygons using the vertex as the viewing position.
The area light source is filtered down and clipped during the traversal. The light energy

received are then computed from the fragments which are visible from the vertex.

5.4. Major Drawback of Chin’s Algorithm

As described in [6], finding shadow volumes using the BSP tree traversal method works

well when the environment contains point light sources. When the method is applied to

45

environment with area light sources, it uses the center of an area light source as the
viewpoint to drive the BSP tree traversal. In order to have a correct front-to-back
" ordering of the polygons with respect to the area light source, a light source which
intersects with any scene polygon plane has to be divided into two by the plane and the
resulting sources are treated independently. This division step is performed at the

beginning of the algorithm.

In a complex environment, an area light source easily intersects with many
polygon’s planes, and is divided recursively into a very large number of subsources.

Consequently, the algorithm runs very slowly.

Figure 5.3 shows a simple example explaining why an environment is over-
subdivided by the algorithm. As shown in Figure 5.3(a), since the light source S
intersects with the plane spanned by polygon B, it is divided into two subsources, S/ and
S$2. The algorithm later divides polygon C at point y, because y is lying on the penumbra
shadow boundary formed by S/ and surface A. However, as shown in Figure 5.3(b), there
is no need to divide C at y because y is not lying on the penumbra shadow boundary
formed by S and surface A. The division of S into S/ and S2 in the preprocessing is
actually aimed for the worst situations and such subdivision is not needed in processing

most polygons in the scene.

46

(a) (b)

Figure 5.3. (a) Subdivision of C if S is divided by B; (b) subdivision of C if B does
not exist.

5.5. A Fast Area-Driven BSP Tree Traversal

Instead of dividing a light source at the beginning of the algorithm, we proposed to
postpone the subdivision until the area light source reaches a BSP tree node associated
with a plane intersects with it. In each iteration of the progressive refinement, the area
light source chosen is used to guide the BSP tree traversal. The situations are exactly the
same as that of a point light source if the area light source does not intersects with the
plane associated with the BSP tree node being visited. When the traversal reaches a node
P whose plane intersects with the light source, the light source is divided into two
accordingly. Let the subsource in the positive space of the plane be the positive
subsource and the one in the negative space be the negative subsource. The traversal is
now forked into two and each guided by one of the subsource. The order of the traversal
guided by the positive subsource is: positive subtree of P, P and then the negative subtree

of P. The order of the traversal guided by the negative source is just the opposite. The

47

two traversals are performed independently. The division of the source is no longer
needed when the two traversals are complete. The source is treated as one piece again

when the traversal backtracks to the parent of P.

As described in the previous sections, two shadow volumes are enlarged during the
traversal of the BSP tree. In the modified algorithm, when a light source reaches a tree
node whose plane intersects with the source, the two shadow volumes are duplicated and
enlarged independently in the two traversals forked. When both traversals complete, the
two penumbra volumes are merged into one again, and so is the two umbra volumes. In
our implementation, we use the method described in [29] for merging two BSP trees

representing volumes.

Figure 5.4 shows a two dimensional scene with an area light source representing by
a rectangular bar. When the original algorithm is used, the light source are divided into
three. The traversal sequences are shown in Figure 5.4(c). When the new algorithm is
used, the light source S is divided only when the traversal reaches node 5a. The source is
considered as a single piece again when the traversal backtrack from node Sa. The next
subdivision occurs when node 2 is traversed. Figure 5.4(d) shows the resulting traversal
sequences. Note that the number of nodes traversed and processed is less than that in the

original algorithm. Therefore, much work is saved and the new algorithm runs faster than

the original one.

SN 2
S5a 50 1

(a) (b)

Sl: 5b4 526312 5 /65a]
S2:5b4 65312 < >4\ >3< 2>
S3:5b465a321 5b S5a 6 21
(©) (d)
Figure 5.4. (a) A two dimensional scene; (b) A BSP tree for the scene; (c¢) The

traversal ordering in the original algorithm; (d) the traversal ordering in
the new algorithm.

To avoid the inefficiency in finding the visible portion of a source from a vertex in
the penumbra region, the energy received by the vertex is approximated by sampling. A
set of evenly distributed points on the source is first chosen. The visibility of each point
from the vertex is determined using the improved visibility test described in previous
sections. The ratio of the number of visible points over the total number of points
approximates the ratio of the energy received by the vertex over that in the case of no
blocking. The latter can be computed using Baum’s analytical formula described earlier.

Experiments show that this sampling method speeds up the algorithm without noticeable

49

defects in the resulting images.

A pseudo code description of the modified algorithm is given as follow:

Input : a scene represented by convex polygons
Output : fragmented polygons and radiosities of the polygons’ vertices

Radiosiry ()

{
Construct a BSP tree containing all polygons in the scene;
for each light source s, in the order of descending intensity, do [
PenumbraTree := UmbraTree := empty;
Shoot(s, PenumbraTree, UmbraTree, Btree->root);
/
/

Shoot (surface src, PenumbraBSP ptree, UmbraBSP utree, BSPTreeNode P)

{
if (P == NIL) return;

if (src lies on P->plane’s positive side) {

Shoot (src, ptree, utree, P->positiveChild);
For each polygon F lies on the plane of P {
use ptree and utree 1o find the shadow boundaries on F;
update the radiosities received by the vertices’ of F
and its subpatches;
enlarge ptree and utree by merging them with the
shadow volumes cast by F;

/

Shoot (src, ptree, utree, P->negativeChild);
J else if (src lies on P->plane’s negative side) {
/* similar to above */

}else {
Divide (src, P->plane, src_pos, src_neg);
TreeCopy (ptree, ptl); TreeCopy (utree, utl);
TreeCopy (ptree, pt2); TreeCopy (utree, ur2);
Shoot (src_pos, ptl, utl, P);
Shoot (src_neg, pt2, ut2, P);
ptree = mergeTree (ptl, pi2);
utree = mergeTree (utl, ut2);

50

5.6. Experiments and Results

To evaluate the improvement of the new algorithm over the original one, two simple
scenes as shown in Figure 5.5 are rendered. Figure 5.4 shows the statistics of the

experiments.

In the first scene, an area light source is located directly above the box. In the
second scene, an area light source is located above the chair. When the original
algorithm is used, the source is divided into 6 pieces by the sides of the box in the first
scene and is divided into 16 pieces by the sides of the chair’s legs in the second scene. In
the new algorithm, the light source is divided only when necessary and much replicated
works is saved. As a result the algorithm runs much faster than the original one. The

amount of time saved is proportional to the total number of subdivisions of light sources

in the original algorithm.

Note that the pictures produced by the improved algorithm are indistinguishable
from those produced by the original method. Although the new algorithm subdivides less
polygons than the original one, there is no deteriorating of the quality of the pictures

produced. It is because the speed-up is due to the saving of the redundant subdivisions of

polygons in the original algorithm.

box polygon input | polygon output | sub light sources time (min)
improved algorithm 90 23599 1 7.5
original method 90 36184 6 16

sub light sources

‘ time (min) J

chair polygon input | polygon output
improved algorithm 43 33924 1 6.5
original method 43 64516 16 116

Figure 5.4.

cpu times used for producing Figure 5.5.

51

(a)

(b)

(c)

Figure 5.5. Two simple scenes shown by:
(a) wireframe pictures before computation;

(b) results produced by original algorithm;
(c) results produced by our algorithm.

52

CHAPTER 6

System Design Issues

Experiments and evaluations showed that the proposed algorithms run faster than other
algorithms published in the literature. The last phase of the study is to implement a

practical software package using the proposed algorithms.

The object-oriented methodology was chosen as the programming framework. The
advantage of object-oriented programming is that it enhances the programming code’s
reusability and extensibility. It is especially suitable for computer graphics programming
and large development tasks. Many fundamental entities in computer graphics, such as
vectors, planes and polygons, can be implemented as objects and be used in various
programs. Among many object-oriented programming languages, C++ [28] was chosen

because of its efficiency, flexibility, and portability.

Figure 6.1 shows the architecture of the software package. The core part of the
package consists of four modules: namely input, tuning, radiosity engine and output. The
input module reads in a file which contains information about the surfaces in the
environment being processed. The tuning module provides user with controls of the

radiosity computations. The radiosity engine performs computations. The output module

53

saves the results into a file for display. The detailed functionalities of each module are

described in the following sections.

interactive control

N R :

tuning module ’

radiosity engine

[
1
I
i
1
I
| ¢
!
|
|
!
1
|
I
|
l
1
1
1

OOGP functions
|V
D input output 3
module 0O0GP module =
! Internal :
I data |
‘L_ _______________ S !
L e o]

Figure 6.1. Block diagram of the radiosity software.

6.1. The Kernel -- an Object-Oriented Graphics Package

The most fundamental component of this package is a collection of objects, grouped as a
programming library called the object-oriented graphics package (OOGP). OOGP
consists of C++ data structures together with functions for their manipulation. Many
commonly used computer graphics entities, such as vectors, lines, planes, vertices and
polygons are included. The use of these objects is not limited to radiosity computation,

they are also frequently used in many other computer graphics applications. Figure 6.2

54

shows the class hierarchy of the objects

in the OOGP programming library.

Array
LinkedList
— Queue
— Utlities— T Stack
— MemoryPool
— Image2D
[Matrix 7 TransformationMatrix
— Vector RGBColor
Vertex
Snedometrlc — Line
ObJects = N odeling |~ Plane
Objects [— Edge
~— Polygon
[MaterialProperty
— Geom-DB
[BinaryTreeNode[NormalBSPTreeNode
—— ShadowVolumeBSPTreeNode
—— BSPInNode
— BSP—/ — BSPOutNode
— BinaryTree—I: NormalBSPTree
' ShadowVolumeBSPTree I: PenumbraTree
UmbraTree
Figure 6.2. Class hierarchy of objects in the OOGP programming library.

Features of a material, e.g. color and reflectivity, are stored in object entities called

material-property. Each vertex or polygon has a pointer pointing to one of these objects.

This arrangement enables sharing of material properties between a surface and its sub-

surfaces. Another important object in OOGP, called geom-db, is used as a database for

55

storing all the vertices, edges and polygons in the environment being processed.

A set of utility objects, such as array, linked-list, stack and BSP-tree are also
included in OOGP. Various subclasses of BSP trees, such as normal-bsp, penumbra-tree
and umbra-tree, are implemented and used for different purposes. These objects were
designed as general and as efficient as possible because they are used very frequently in

other modules.

6.2. Input and Output Modules

There are many powerful and sophisticated software packages for modeling scenes using
polygons. Some of these packages are widely used in the industry already. The input
module is used to translate a scene description file in one of the commonly used formats
to OOGP data structures for radiosity computation. The output module is used to save the
results of the computation in an output file in Open Inventor format which can be used by
other software for producing pictures, animations, or interactive architectural walk-

through.

Currently the input module can converts files in Open Invéntor [32], Alias [2], or 3D
Studio [11] formats into OOGP data structures. Open Inventor is an open standard ASCII
file format used for describing 3D environments. Alias is a sophisticated 3D modeling
and rendering software package which is widely used by the high performance
workstations industry. 3D Studio is another 3D modeling and rendering software package.

It is available on the PC platform and therefore has a very large user community.

The output module exports files in Open Inventor format which is the only format

which allows color information be assigned to individual vertex. Moreover, Open

56

Inventor is the superset of the Virtal Reality Modeling Language (VRML) [1] which is
widely used nowadays by the World Wide Web applications. Therefore, our software

package can also be used by web users for creating their web contents.

6.3. The Radiosity Engine

Both algorithms proposed in previous sections are implemented inside the radiosity engine
module which is built on top of OOGP. Figure 6.3 shows the components of the radiosity

engine.

scene in scene out
------------ > pr-renderer f=-~ -
{ shooter {
J form-factor J L visibility adaptive cutter

Figure 6.3. The components of the radiosity engine.

The internal data structures created by the input module are passed to an object
called pr-renderer which performs radiosity computation using the progressive refinement
approach. It proceeds in iterations. In each round, it chooses the brightest surface in the
scene and passes this surface to the object called shooter. Shooter shoots out the energy
of the surface chosen, and updates the radiosity of the receiving vertices in the scene. It

achieves the job by making use of three other objects, form-factor, visibility and

57

adaptive-cutter, in the radiosity engine.

Form-factor is a functional object which uses Baum’s analytical formula to compute
the form-factor between a receiving vertex and a source polygon. It assumes that the
source polygon is completely visible from the receiving vertex. The visibility object is
used to determine the visibility between vertices and surfaces. It uses the improved ray
tracing method with a pre-test performed using the hemicube method. The adaprive-
cutter object uses various BSP-tree objects for determining the shadow boundaries on

surfaces in the environment. These boundaries are used for subdividing the surfaces.

6.4. The Tuning Module

The tuning module interacts with users through a graphical panel shown in Figure 6.4.
The panel contains knobs for users to specify threshold values which control the radiosity
computation. The area threshold defines the lower bound of the area a surface can
become in subdivision. This prevents the adaptive subdivision algorithm from producing
too many small subpatches. The form-factor threshold is used to control the level of
subdivision on receiving surfaces. If the form-factor between two surfaces is greater than
this threshold, the algorithm will subdivide the receiving surface recursively until the

threshold value is reached.

58

Figure 6.4. Graphical interface of the software package.

A major area of the interface panel displays the environment from a perspective
view during progressive refinement. With a mouse, a user can change the viewpoint and
observe the resulting scene in real time. A bution can be used to toggle the display

between the wireframe mode and the Gouraud shading mode.

The graphics interface is implemented using OSF/Motif programming library
[21,22]. The rendering of the perspective view is implemented using OpenGL
programming library [18,19). Figure 4.5 shows the hierarchy of)ibraries vsed in various
modules of our software package. It should be noticed that C++ is a multi-platform
programming language and OpenGL becomes more and more popular nowadays. As a
result, the software can easily be ported from one platform to another platform by just

rewriting the part which uses OSF/Motif and Xlib.

The software package

tuning module

i " Radiosty Engi
OSE/Motif Radiosity Engine

input/output
module

OpenGL 7
Xlib OOGP

C++ library

hardware

Figure 6.5. The hierarchy of libraries and modules in the software package.

60

CHAPTER 7

Conclusions

We have studied most of the important radiosity algorithms published in the literature.
By visualizing the errors induced by these methods, a clear understanding of the
advantages and shortcomings of these algorithms is obtained. These observations lead to
substantial improvements in the radiosity calculation. By fully utilizing the graphics
hardware and speeding up the visibility determinations using BSP tree, the improved
algorithm runs four times faster than other published methods. We have also developed
an adaptive subdivision algorithm which subdivides surfaces in an environment along the
shadow boundaries automatically. This algorithm produces accurate shadows without any
user intervention. Lastly, we have wrapped up the programs coded for radiosity
calculation into a practical software package. The package imports files in one of the
common scene description formats, performs the radiosity computations, and exports the
result to a file in Open Inventor format. We hope that this software package will enable
students in computer science or architecture to experience the radiosity method, provide
computer artists an alternative means to produce photorealistic computer graphics, and

allow an interior designer to visualize and market his/her design plans.

61

References

(1]

(5]

(6]

Ames, Andrea L., David R. Nadeau, John L. Moreland, The VRML Sourcebook,

Wiley, 1996.

Anderson, Pat, Lisa Ford, Sam Hiyate, Colleen Nolan, Stephanie Noonan, Alias

Reference Guide, Alias Research Inc., 1994.

Baum, Daniel R., Holly E. Rushmeier, James M. Winget, "Improving Radiosity
Solutions Through the Use of Analytically Determined Form-Factors,” Computer

Graphics (SIGGRAPH’89 Proceedings), Vol.23, No.3, July 1989, pp.325-334.

Burger, Peter, Duncan Gillies, Interactive Computer Graphics -- Functional,

Procedural and Device-Level Methods, Addison Wesley, 1939.

Campbell, A.T. III, Donald S. Fussell, "Adaptive Mesh Generation for Global
Diffuse Illumination," Computer Graphics (SIGGRAPH'90 Proceedings),

Vol.24, No.4, August 1990, pp.155-164.

Chin, Norman, Steven Feiner, "Near Real-Time Shadow Generation Using BSP

Trees,"” Computer Graphics (SIGGRAPH'89 Proceedings), Vol.23, No.3, July

62

(8]

{10]

[11]

[13]

1989, pp.99-106.

Chin, Norman, Steven Feiner, "Fast Object-Precision Shadow Generation for
Area Light Sources Using BSP Trees," Proceedings of 1992 Symposium on

Interactive 3D Graphics, March 1992.

Cohen, Michael F., Donald P. Greenberg, "The Hemi-Cube: A Radiosity
Solution for Complex Environments," Computer Graphics (SIGGRAPH’85

Proceedings), Vol.19, No.3, July 1985, pp.31-40.

Cohen, Michael F., Donald P. Greenberg, David S. Immel, Philip J. Brock, "An
Efficient Radiosity Approach for Realistic Image Synthesis," IEEE Computer

Graphics and Applications, Vol.6, No.2, March 1986, pp.26-35.

Cohen, Michael F., Shenchang Eric Chen, John R. Wallace, Donald P.
Greenberg, "A Progressive Refinement Approach to Fast Radiosity Image
Generation," Computer Graphics (SIGGRAPH’88 Proceedings), Vol.22, Nod,

August 1988, pp.75-84.

Elliott, Steven, Phillip Miller, Inside 3D Studio, Release 4, New Riders

Publishing, 1995.

Foley, J., A. van Dam, S. Feiner, and J. Hughes, Computer Graphics: Principles

and Practice, 2nd ed., Addison Wesley, 1990.

Fuchs, Henry, Zvi M. Kedem and Bruce Naylor, "On Visible Surface
Generation by A Priori Tree Structures," Computer Graphics (SIGGRAPH'80

Proceedings), Vol.14, No.3, July 1980, pp.124-133.

63

[14]

[17]

[18]

[19]

(20]

[21]

Glassner, Andrew S., "Space Subdivision for Fast Ray Tracing," IEEE

Computer Graphics and Applications, Vol.4, No.10, March 1984, pp.15-22.

Goral, Cindy M., Kenneth E. Torrance, Donald P. Greenberg, Bennett Battaile,
"Modeling the Interaction of Light Between Diffuse Surfaces," Computer

Graphics (SIGGRAPH’84 Proceedings), Vol.18, No.3, July 1984, pp.213-222.

Immel, David S., Michael F. Cohen, Donald P. Greenberg, "A Radiosity Method
for Non-Diffuse Environments," Computer Graphics (SIGGRAPH’86

Proceedings), Vol.20, No.4, August 1986, pp.133-142.

Lischinski, Dani, Filippo Tampieri, Donald P. Greenberg, "Discontinuity
Meshing for Accurate Radiosity," IEEE Computer Graphics and Applications,

Vol.12, No.6, November 1992, pp.25-39.

McLendon, Patricia, Graphics Library Programming Guide, Silicon Graphics,

Inc., 1991.

Neider, Jackie, Tom Davis, Mason Woo, OpenGL Programming Guide, Addison

Wesley, 1993.

Nishita, Tomoyuki, Eihachiro Nakamae, "Continuous Tone Representation of
Three-Dimensional Objects Taking Account of Shadows and Interreflection,”

Computer Graphics (SIGGRAPH’85 Proceedings), Vol.19, No.3, July 1985,

pp.23-30.

Nye, Adrian, Xlib Programming Manual, O’Reilly & Associates, Inc., 1990.

[22]

[23]

[24]

(25]

(26]

[27]

[28]

[29]

Open Software Foundation, OSF/Motif Programmer’s Guide Release 1.1,

Prentice Hall, 1991.

Paterson, Michael S., F. Frances Yao, "Binary Partitions with Applications to
Hidden-Surface Removal and Solid Modelling,” Proceedings of the Fifth Annual

Symposium on Computational Geometry, 1989, pp.23-32.

Shao, M.Z., Q.S. Peng, Y.D. Liang, "A New Radiosity Approach by Procedural
Refinements for Realistic Image Synthesis," Computer Graphics (SIGGRAPH'88

Proceedings), Vol.22, No.4, August 1988, pp.93-101.

Shirley, Peter, "A Ray Tracing Method for Illumination Calculation in Diffuse-

Specular Scenes," Proceedings of Graphics Interface’90, May 1990, pp.205-212.

Siegel, Robert, John R. Howell, Thermal Radiation Heat Transfer, Hemisphere

Publishing Corporation, New York, 1981.

Sillion, Francois, C. Puech, "A General Two-Pass Method Integrating Specular
and Diffuse Reflection,” Compurter Graphics (SIGGRAPH’89 Proceedings),

Vol.23, No.3, July 1989, pp.335-344.

Stroustrup, Bjame, The C++ Programming Language, 2nd ed., Addison Wesley,

1991.

Thibault, William C., J. Amanatides, Bruce F. Naylor, "Merging BSP Trees
Yields Polyhedral Set Operations," Computer Graphics (SIGGRAPH’90

Proceedings), Vol.24, No.4, August 1990, pp.115-124.

65

[30]

[31]

Wallace, John R., Kells A. Elmquist, Eric A. Haines, "A Ray Tracing Algorithm
for Progressive Radiosity," Computer Graphics (SIGGRAPH’89 Proceedings),

Vol.23, No.3, July 1989, pp.315-324.

Wallace, John R., Michael F. Cohen, Donald P. Greenberg, "A Two-Pass
Solution to the Rendering Equation: A Synthesis of Ray Tracing and Radiosity
Methods," Computer Graphics (SIGGRAPH'87 Proceedings), Vol.21, No.4, July

1987, pp.311-320.

Wernecke, Josie, The Inventor Mentor, Addison Wesley, 1994,

Wong, K. W.,, W. W. Tsang, "Three Improvements in the Ray Tracing
Algorithm for Progressive Radiosity,” Tech. Report TR-93-05, Computer Science

Department, The University of Hong Kong, May 1993.

66

. APPENDIX

A New Form-Factor Formula from a
Disk to a Differential Area

Derivation of the form-factor formula from a disk to a differential area (Equation 6) :

Figure A.1 Figure A.2

67

WLOG, assume center of disk k is located at the origin and & lies on the x-z plane.

Furthermore, assume differential area j is located at ;’] =[rsinéy, rcoséy, 0] (Figure A.1).

Refer to Figure A.2:

-

=1 Rcosy, 0, Rsiny]

—

tr = [Rcos(y +dy), 0, Rsin(y +dy)]

.

fl = z—,'—c?}' =[Rcosy —rsin g, —r cosfy,
2

Rsiny]
fr—dj =

[Rcos(y +dy)—rsinfy, —rcos 8y, Rsin(y +dy) |

Let I“;y, 1s a vector with magnitude equal to the angle d¢ (in radians) and direction equal to

the cross product of the vector fl and 772

- f)(f
Ty, = L2 2 wae

-

IT)1 1T, sin d¢&

= — when d& — 0

—Rrcos 0, [sin(y + dy) —siny] T
\r2 + R2 = 2rR sin 8, cos y \r2 + R2 = 2rR sin 8, cos(y + dy)
Rr sin 8, [sin(y + dy) — siny] — R?sindy
\r? + R2 = 2rR sin 6; cos y \r2 + R? — 2rR sin 6, cos(y + dy)
Rr cos 8, [cos(w + dy) — cos y]
i \r2+ R? - 2rR sin By cosy \[r2 + R% - 2rR sin 8, cos(y + dy) |

Using the definitions above, we can write down the form-factor formula from disk & to

differential area j by rewriting the Baum’s form-factor formula [3] as:

68

F _ j - -
1T oA, j Nj - Tay
W
—dA
— J
27Z'Ak XN" (v[rdl//)

Before we evaluate J. [, , we have made an assumption that when projecting j T;y, onto
v v

the coordinate system defined by [¢}, €3, €;] as shown in Figure A.l, the ¢y and ¢

component ofJ. F;,, are negligible.
v

[siné;, cosé,, 0]
[—COSQk, sin Hk, 0]
[O 0, 1]

RATRSATENAH

Project the vector I'y,, onto the coordinate system [&5, €, ¢;], we get:

—R%cos 6y sindy
\r2 + R2 = 2rR sin 6, cos v \[r2 + R2 — 2R sin 6, cos(y + dy)
~ el [Rrcosy — R?sin 6, 1dy
\r2 + R2 = 2rR sin 8, cos y \/r2 + R2 —2rR sin 6, cos(y + dy)
—Rr cos G [cos(y + dy) — cos]
L \r2+ R2 = 2rR sin 6, cos w \r2 + R2 = 2/R sin 6 cos(y + dy) |

Therefore, based on our assumption,

~R? cos 0 sindy

[e =] , 0,01
Y v \r2+ R*~2rR sin 6, cosy \[r2 + R2 = 2rR sin 6, cos(y + dy)

—27R*cos 8, y \r2+ R2 = 2rRsin 6,
r2+R?—-2rRsin6; \[r2+ R2 +2rRsin6;

=~ 0, 0]

and the form-factor from disk k to differential area j can be written as:

69

~dA;
B 27[Ak

xﬁj-(jr;,,)
v

5 Aj x|l ﬁj Il J F;,,, Il cos(angle between 1\7}- and J I‘;y,)
A
v v

~dA; —27R? cos 6, N2+ R2-2rR sin 6,
2rAr r?+ R2-2rRsin 6, \[r2+R2+2rR sin 6,

cos ej

dA cos 6y cos b « NP2+ RT=2rRsin 6,
nrt+ Ay —27rRsin8, A[;2 + R2 + 2/R sin 6,

70

